User Tools

Site Tools


math:coq_notes

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math:coq_notes [2019/02/03 14:42]
dave [Standard Library]
math:coq_notes [2019/02/03 19:44] (current)
dave [Vernacular Commands]
Line 82: Line 82:
 Theorem <​test_name>:​ [<​quantifier>,​] <boolean expression>​. Theorem <​test_name>:​ [<​quantifier>,​] <boolean expression>​.
 </​code>​ </​code>​
-    * Example of a quantifier: ​ ''​for all:  ​n:​nat'':<​code>​ +    * Example of a quantifier: ​ ''​forall ​ ​n:​nat'':<​code>​ 
-Theorem n_plus_0 : foralln:nat, 0 + n = n.+Theorem n_plus_0 : forall n:nat, 0 + n = n.
 </​code>​ </​code>​
     * The above simply states: "​Adding zero to every natural number results in the same natural number"​     * The above simply states: "​Adding zero to every natural number results in the same natural number"​
Line 120: Line 120:
  
   * If ''​n''​ is a ''​nat'',​ then the expression ''​S n''​ is the same as ''​n + 1''​.   * If ''​n''​ is a ''​nat'',​ then the expression ''​S n''​ is the same as ''​n + 1''​.
-    * This is because ''​nat''​ modeled as a linked list with no item--the value is encoded in the number of links in the list.  (This is *very* weird.)+    * This is because ''​nat''​ modeled as a linked list with no item--the value is encoded in the number of links in the list.  (This is *very* weird way to model numbers.)
     * S is one of the constructors of ''​nat''​ which takes a single argument having type ''​nat''​.     * S is one of the constructors of ''​nat''​ which takes a single argument having type ''​nat''​.
  
math/coq_notes.1549233731.txt.gz · Last modified: 2019/02/03 14:42 by dave